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Abstract

Let Bn(f, q; x), n = 1, 2, . . . be the q-Bernstein polynomials of a function f ∈ C[0, 1]. In the case
0 < q < 1, a sequence {Bn(f, q; x)} generates a positive linear operator B∞ = B∞,q on C[0, 1], which is
called the limit q-Bernstein operator. In this paper, a connection between the smoothness of a function f and
the analytic properties of its image under B∞ is studied.
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1. Introduction

Since Bernstein polynomials play an important role in Approximation Theory and its applica-
tions, their various generalizations have been studied (see, e.g. [5,10,17,4,13]).

Due to the intensive development of q-Calculus, the generalizations of Bernstein polynomials
connected with q-Calculus have emerged.

In 1997, Phillips [14] introduced the q-Bernstein polynomials. While for q = 1 these poly-
nomials coincide with the classical ones, for q �= 1 we obtain new polynomials with interesting
properties. These polynomials have been studied lately by a number of authors, see [3,7,9,11,15]
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and references therein, [18–21]. The convergence of q-Bernstein polynomials was considered in
[9,11,18–21]. In [9,11], it was shown that for q �= 1, the convergence properties of the q-Bernstein
polynomials are different from those of the classical ones. The approximation by a sequence of
q-Bernstein polynomials with estimates for the rate of convergence in the case qn ↑ 1 was con-
sidered by Videnskii in [18–20], where he also studied modifications of these polynomials which
improve the degree of approximation for f ∈ C2[0, 1].

In the case q ∈ (0, 1), each q-Bernstein polynomial is a positive linear operator on C[0, 1].
Moreover, a sequence of q-Bernstein polynomials converges uniformly for each f ∈ C[0, 1], and
its limit is a positive linear operator on C[0, 1], which we call the limit q-Bernstein operator. In
distinction from the classical case q = 1, the sequence of q-Bernstein polynomials for q ∈ (0, 1)

does not satisfy the conditions of Korovkin’s Theorem, and the limit q-Bernstein operator is not
the identity operator. Recently, Wang [21] proved a general Korovkin-type theorem which is
applicable to sequences of q-Bernstein polynomials. The theorem implies not only the existence
of the limit q-Bernstein operator, but also an estimate for the rate of convergence, which is sharp
for f ∈ C2[0, 1].

The approximation by the limit q-Bernstein operator as q ↑ 1 was studied by Videnskii [18,19].
The connection of this operator with a generalized Poisson distribution is considered in [12]. Wang
observed that the limit q-Bernstein operator arises as the limit of a sequence of q-Meyer-König
and Zeller operators considered by Trif [16].

The limit q-Bernstein operator is a positive shape-preserving linear operator approximating
continuous functions on [0, 1] as q ↑ 1. Operators of this type are studied intensively in Approx-
imation Theory (cf., e.g. [5]).

In this paper, we investigate the impact of the limit q-Bernstein operator on the analytic prop-
erties of functions. The change of smoothness under linear operators is an important problem
of Classical Analysis. For instance, the smoothing of a function via convolution is used widely
not only in Approximation Theory, but also in Distribution Theory, Fourier Analysis, and the
Theory of Subharmonic Functions (cf., e.g. [6]). The usage of the smoothing method is based
on the fact that, as a rule, the convolution operator improves the smoothness of a function. At
the same time in some cases, the convolution causes a tremendous deterioration of smoothness
(cf., e.g., [8]).

Our study reveals the following phenomenon: the limit q-Bernstein operator, in general, im-
proves the analytic properties of functions. The improvement occurs for functions that are neither
“too good” (polynomials) nor “too bad” (without the regularity condition given by (5.4)).

We apply the obtained results to finding eigenfunctions of the limit q-Bernstein operator. The
eigenstructure of the classical Bernstein operator is described in [2], where the authors also
demonstrate various applications of their results. The complete description of the spectrum and
eigenfunctions of the limit q-Bernstein operator remains an open problem, for which some initial
steps have been made in [11].

We use the following standard notation (cf., e.g. [1, Chapter 10, Section 10.2]):

(z; q)0 := 1, (z; q)n :=
n−1∏
k=0

(1 − zqk), (z; q)∞ =
∞∏

k=0

(1 − zqk),

[n

k

]
q

:= (q; q)n

(q; q)k(q; q)n−k

for q �= 1,
[n

k

]
1

:=
(n

k

)
, 0�k�n.
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Definition 1.1 (Philips [14]). Let f : [0, 1] → C, q > 0. The q-Bernstein polynomial of f is

Bn(f, q; x) =
n∑

k=0

f

(
1 − qk

1 − qn

)
pnk(q; x), n = 1, 2, . . . ,

where

pnk(q; x) :=
[n

k

]
q
xk(x; q)n−k, k = 0, 1, . . . n.

To describe the behavior of {Bn(f, q; x)} in the case q ∈ (0, 1) and n → ∞, consider the entire
functions p∞k(q; x) := limn→∞ pnk(q; x), that is

p∞k(q; x) = xk

(q; q)k
(x; q)∞, k = 0, 1, . . . . (1.1)

By Euler’s Identity (cf. [1, Chapter 10, Corollary 10.2.2]), we have

∞∑
k=0

p∞k(q; x) = 1 for all x ∈ [0, 1). (1.2)

For f ∈ C[0, 1], we set:

B∞(f, q; x) :=
{ ∑∞

k=0 f (1 − qk)p∞k(q; x) if x ∈ [0, 1),

f (1) if x = 1.
(1.3)

Note that since the sequence {f (1 − qk)/(q, q)k} is bounded, B∞(f, q; x) admits an analytic
continuation into the unit disc {z : |z| < 1}. Whenever B∞(f, q; x) admits an analytic continua-
tion into a domain D ⊆ C, we denote the continued function by B∞(f, q; z), z ∈ D ⊆ C.

Theorem (Il’inskii and Ostrovska [9]). For q ∈ (0, 1) and any f ∈ C[0, 1],
Bn(f, q; x) → B∞(f, q; x) as n → ∞ uniformly on [0, 1]. (1.4)

The equality B∞(f, q; x) = f (x) holds if and only if f (x) = ax + b.

As a result, for q ∈ (0, 1) the sequence {Bn(f, q; x)} is not approximating a function f unless
f is linear. It should be noted here that this is completely in contrast to the case q = 1, where
{Bn(f, 1; x)} approximates f for any f ∈ C[0, 1]. For q ∈ (1, ∞) approximating properties of
{Bn(f, q; x)} were investigated in [11].

Definition 1.2. Let q ∈ (0, 1). The linear operator on C[0, 1] given by

B∞ = B∞,q : f �→ B∞(f, q; x)

is called the limit q-Bernstein operator.

The theorem above shows that this operator arises naturally when we consider the limit of a
sequence of q-Bernstein polynomials for q ∈ (0, 1).

It follows from (1.1)–(1.3) that B∞ is a bounded positive linear operator on C[0, 1] with
‖B∞‖ = 1. It is readily seen from (1.3) that B∞ possesses the end-point interpolation property:

B∞(f, q; 0) = f (0), B∞(f, q; 1) = f (1) for all q ∈ (0, 1). (1.5)
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The theorem of [9] above says that B∞ leaves invariant linear functions. Besides (cf. [9, Theorem
1]), for any f ∈ C[0, 1],

B∞(f, q; x) → f (x) as q ↑ 1 uniformly on [0, 1].
More information on approximation by B∞ is given in [18,19].

In this paper, we discuss the connection between the smoothness of f and the analytic properties
of its image B∞(f, q; x) with q ∈ (0, 1) being fixed. It has already been mentioned that for any
f ∈ C[0, 1], the function B∞(f, q; z) is analytic in {z : |z| < 1}. In Section 2, we discuss the
conditions for analytic continuation of B∞(f, q; x) into a disc {z : |z| < R}, where R > 1. It
is shown that the smoother f at 1 is, the greater R becomes; and if f is infinitely differentiable at
1, then B∞(f, q; z) is entire. In Section 3, we give estimates of growth for this entire function
via magnitudes of consecutive derivatives of f . These results imply that for any entire function
f , the growth of B∞(f, q; z) does not exceed the growth of (z; q)∞. In Section 4, we show
that for an entire function whose growth is slower than that of (z; q)∞, this bound can be im-
proved. Finally, in Section 5, we discuss images of functions with “bad” smoothness, that is,
without the Lipschitz condition. We show that under certain regularity conditions, B∞ speeds
up the rate of f (x) approaching f (1) as x ↑ 1. This is done in terms of the local modulus of
continuity.

2. Images of Lipschitz continuous functions and differentiable functions

It was proved in [9] that for any f ∈ C[0, 1], the function B∞(f, q; x) is continuous on [0,1]
and admits an analytic continuation into the unit disc {z : |z| < 1}. In general, B∞(f, q; x)

may not be analytically continued into a wider disc. For example, if f ∈ C[0, 1] is such that
f (0) = f (1) = 0, f (1 − qk) = 1/k, k = 1, 2, . . . , then B∞(f, q; x) is not differentiable at 1.

However, we will show that under some conditions concerning the smoothness of f in a left
neighborhood of 1, B∞(f, q; x) can be analytically extended into a disc of radius > 1. We need
the next lemma, which shows a remarkable property of B∞. Namely, this operator takes binomial
(1 − x)j to the corresponding q-binomial (1 − x)(1 − qx) . . . (1 − qj−1x).

Lemma 2.1. The following identities hold:

B∞
(
(1 − t)j , q; z

)
= (z; q)j , j = 0, 1, 2, . . . . (2.1)

Corollary 2.2 (Il’inskii and Ostrovska [9]). If f is a polynomial, then B∞(f, q; z) is also a
polynomial and deg B∞(f, q; z) = deg f .

Proof of Lemma 2.1. It suffices to prove (2.1) for x ∈ [0, 1).
By Definition (1.3) and Euler’s Identity (cf. [1, Chapter 10, Corollary 10.2.2]), we have:

B∞
(
(1 − t)j , q; x

)
= (x; q)∞

∞∑
k=0

(qj x)k

(q; q)k
= (x; q)∞

(qj x; q)∞
= (x; q)j . �

The following theorem shows that the possibility of an analytic continuation for B∞(f, q; x)

is affected by the smoothness of f at 1 (which is, in fact, the smoothness along the sequence
{1 − qk}).
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Theorem 2.3. (i) If f is m times differentiable from the left at 1, then B∞(f, q; x) admits analytic
continuation into the disc {z : |z| < q−m}.

In particular, if f is infinitely differentiable from the left at 1, then B∞(f, q; z) is entire.
(ii) Let f have m�0 derivatives at 1 and f (m)(x) satisfy the Lipschitz condition at 1, that is

|f (m)(x) − f (m)(1)|�M(1 − x)� for some M > 0, 0 < ��1. (2.2)

Then B∞(f, q; x) admits an analytic continuation into the disc {z : |z| < q−(m+�)}.

Remark 2.1. The results of Theorem 2.3 are sharp. In general, if f has exactly m�0 derivatives
at 1, then B∞(f, q; x) may not be differentiable at z = q−m, and hence B∞(f, q; x) may not
admit an analytic continuation into a disc of radius R > q−m. Consider the following example:

Let f ∈ C[0, 1] be so that

f (x) =
⎧⎨
⎩

0 if x = 0,
(1−x)m

ln(1/(1−x))
if x ∈ [1 − q, 1),

0 if x = 1.

Clearly, f has m derivatives at 1 and B∞(f, q; z) is analytic in {z : |z| < q−m.} Moreover, the
following representation is valid:

B∞(f, q; z) = (z; q)∞
∞∑

k=0

f (1 − qk)

(q; q)k
zk

= (z; q)∞
∞∑

k=1

(qmz)k

k(q; q)k ln(1/q)
, |z| < q−m.

We set B∞(f, q; q−m) = 0 in order that the function be continuous on [0, q−m].
We show that B∞(f, q; x) is not differentiable at q−m, and therefore it cannot be analytically

extended into a wider disc. Indeed, for x ∈ (0, q−m),

B∞(f, q; x) − B∞(f, q; q−m)

x − q−m
= −qm(x; q)∞

1 − qmx

∞∑
k=1

(qmz)k

k(q; q)k ln(1/q)

= −qm(x; q)m(xqm+1; q)∞
∞∑

k=1

(qmz)k

k(q; q)k ln(1/q)
.

We notice that
∞∑

k=1

(qmz)k

k(q; q)k ln(1/q)
� 1

ln(1/q)
ln

1

1 − qmx
→ ∞ as x ↑ q−m.

Since qm(q−m; q)m(q; q)∞ �= 0, it follows that

B∞(f, q; x) − B∞(f, q; q−m)

x − q−m
→ ∞ as x ↑ q−m.

Thus, B∞(f, q; x) is not differentiable at q−m.
Similarly, for 0 < ��1, consider

f�(x) =
{

(1 − x)� if 0 < � < 1,

(1 − x) cos
(

ln(1−x)
ln q

)
if � = 1.
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Clearly, f�(x) satisfies the Lipschitz condition of order � at 1 (for � = 1, we set f (1) = 0).
Therefore, B∞(f�, q; x) has an analytic continuation into a disc {z : |z| < q−�} and it is not
difficult to see that it cannot be analytically extended into a disc {z : |z| < R}, where R > q−�.

Proof of Theorem 2.3. (i) Suppose that f is m times differentiable from the left at 1. By Taylor’s
formula

f (x) =
m∑

j=0

f (j)(1)

j ! (x − 1)j + rm(x) =: Tm(x) + rm(x),

where Tm(x) is a polynomial and the remainder rm is estimated by

rm(x) = o
(
(1 − x)m

)
, x ↑ 1. (2.3)

Obviously, B∞(f, q; x)=B∞(Tm, q; x)+B∞(rm, q; x). Since, by Corollary 2.2, B∞ (Tm, q; x) is
a polynomial, it suffices to prove that B∞(rm, q; x) can be analytically continued into
{z : |z| < q−m}. Using (1.1) and (1.3), we get

B∞(rm, q; z) = (z; q)∞
∞∑

k=0

rm(1 − qk) zk

(q; q)k
, |z| < 1, (2.4)

where (z; q)∞ is an entire function and limk→∞(q; q)k = (q; q)∞ �= 0. Besides, we get from
(2.3) that

|rm(1 − qk)|�Cmqmk for some Cm > 0 and all k = 0, 1, . . . . (2.5)

Hence, the series in (2.4) converges for all z ∈ {z : |z| < q−m}.
(ii) To prove the statement, we replace (2.5) with

|rm(1 − qk)|�Cmq(m+�)k for some Cm > 0 and all k = 0, 1, . . .

and obtain convergence of the series in (2.4) for all z ∈ {z : |z| < q−(m+�)}. �

3. Image of an infinitely differentiable function

Theorem 2.3(i) asserts that if f is infinitely differentiable at 1, then B∞(f, q; z) is entire.
Using estimates for f (j)(x), j = 0, 1, . . . , we can derive conclusions concerning the growth of
B∞(f, q; z). We denote

M(r; f ) := max|z|� r
|f (z)| .

In the sequel, the letter C (possibly with indices) denotes a positive constant, which may not be
specified explicitly. The indices on C will either be a numbering (if more than one constant is
involved) or indicate a dependence on certain parameters. Following this convention, we write
f (x) 
 g(x) if C1g(x)�f (x)�C2g(x).

The following statement is a key point in our reasoning.
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Theorem 3.1. Let f ∈ C[0, 1] ∩ C∞[a, 1], 0�a < 1. Suppose that
∣∣f (j)(x)

∣∣ �Mj for x ∈
[a, 1] and all j = 1, 2, . . . with |f (x)| �M0 for x ∈ [0, 1]. We set

S(n) :=
n∑

j=0

Mj

j ! ,

k0 = k0,a := min
{
k ∈ Z+ : 1 − qk ∈ [a, 1]

}
.

Then for r > 1 the following estimate holds:

M(r; B∞f )�Car
k0S (n + 1) (−r; q)∞,

where

n = n(r) =
[

ln(2r)

ln(1/q)

]
. (3.1)

(By [x] we denote the greatest integer not exceeding x.)

Corollary 3.2. If {Mn/n!} is increasing, then

M (r; B∞f ) �Car
k0

Mn+1

n! (−r; q)∞,

where n = n(r) is given by (3.1).

Proof of Theorem 3.1. For any n = 1, 2, . . . , we write f (x) = Tn(x) + rn(x), where

Tn(x) =
n∑

j=0

f (j)(1)

j ! (x − 1)j .

Clearly, |Tn(x)|�S(n) for x ∈ [0, 1]. It follows from (2.1) that

|B∞(Tn, q; z)|�
n∑

j=0

Mj

j ! |(z; q)j |�
n∑

j=0

Mj

j ! (−|z|; q)j �S(n)(−|z|; q)∞. (3.2)

Obviously, |rn(x)|� |f (x)| + |Tn(x)|�M0 + S(n) for x ∈ [0, 1]. Using (1.3), we write

B∞(rn, q; z) = (z; q)∞
k0∑

k=0

rn(1 − qk)
zk

(q; q)k

+ (z; q)∞
∞∑

k=k0+1

rn(1 − qk)
zk

(q; q)k

=: (z; q)∞(�1 + �2). (3.3)

We have

|�1|� (M0 + S(n))

k0∑
k=0

|z|k
(q; q)k

.
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Taking into account that (q; q)k > (q; q)∞, we get

|�1|� (M0 + S(n))
(k0 + 1)|z|k0

(q; q)∞
for |z| > 1. (3.4)

To estimate �2, we notice that

rn(x) = f (n+1)(�)

(n + 1)! (x − 1)n+1 where � ∈ (x, 1).

Therefore,

|rn(1 − qk)|� Mn+1

(n + 1)! qk(n+1) for k > k0.

It follows that

|�2|� Mn+1

(n + 1)!
∞∑

k=k0+1

(
qn+1|z|)k

(q; q)∞
.

We fix z with |z| > 1 and choose n depending on z in such a way that qn+1|z|�1/2. We take

n =
[

ln(2|z|)
ln(1/q)

]
. (3.5)

With this choice of n, we get

|�2|� 1

(q; q)∞
Mn+1

(n + 1)!
1

2k0
. (3.6)

Juxtaposing (3.3), (3.4), and (3.6), we get for |z| > 1,

|B∞(rn, q; z)|� |(z; q)∞| (|�1| + |�2|)
� (−|z|; q)∞

(q; q)∞

{
(M0 + S(n)) (k0 + 1) |z|k0 + Mn+1

(n + 1)! · 1

2k0

}

� (−|z|; q)∞S(n + 1)

(q; q)∞

{
2 (k0 + 1) |z|k0 + 2−k0

}
�(−|z|; q)∞S(n + 1)C1|z|k0 .

Hence, using (3.2), we get for |z| > 1,

|B∞(f, q; z)|� |B∞(Tn, q; z)| + |B∞(rn, q; z)|�C2|z|k0S(n + 1)(−|z|; q)∞,

where C2 = Ca . �

Now we will show that under relatively mild conditions for Mn, B∞(f, q; z) is an entire
function of a rather slow growth.

Theorem 3.3. (i) If Mn �C0 exp exp(�n) for some � > 0, then

M(r, B∞f )�C1 exp

(
C2 exp

(
� ln r

ln(1/q)

))
for r �r0, (3.7)

that is, B∞f has finite order ��/(ln(1/q)).
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(ii) If Mn �C0 exp(np) for some p > 0, then

M(r, B∞f )�C1 exp
(
C2 (ln r)p1

)
for r �r0, (3.8)

where p1 = max{p, 2}, that is B∞f has finite logarithmic order �p1.

For functions analytic in {z : |z − 1|�� < 1}, the Cauchy Theorem implies for � = �/2 that

f (n)(x) = n!
2�i

∮
|z−1|=�

f (�) d�

(� − x)n+1
, x ∈ [1 − �, 1].

Hence, for x ∈ [1 − �, 1] we obtain:∣∣∣f (n)(x)

∣∣∣ � n!2��Cf

2��n+1
= 2Cf n!�−n with Cf = max

|�−1|=�
|f (�)|.

We set

Mn := C1n!�−n, C1 = 2Cf , n = 0, 1, 2, . . . .

By Stirling’s Formula,

n! 
 nn+ 1
2 e−n.

Therefore,

Mn �C2 exp

{(
n + 1

2

)
ln n − n + n ln(1/�)

}
= O(exp{n ln n + O(n)}), n → ∞.

Hence, Theorem 3.3 (ii) implies the following statement:

Corollary 3.4. If f is analytic at 1, then

M (r; B∞f ) �C1 exp
(
C2 ln2 r

)
. (3.9)

Remark 3.1. Estimate (3.9) is sharp. For example, if f ∈ C∞[0, 1] with f (0) = 1 and f (x) =
0, x ∈ [1 − q, 1], then by (1.3), B∞(f ; z) = (z; q)∞ and

M(r; B∞f ) = M(r; (z; q)∞)�C exp

{
ln2 r

2 ln(1/q)

}
, r �r0.

Proof of Theorem 3.3. (i) We set An := C0 exp exp(�n). Obviously, {An/n!} is increasing
starting from some place, say, for n > m. Hence

S(n + 1) =
n+1∑
j=0

Mj

j ! �
n+1∑
j=0

Aj

j ! =
m∑

j=0

+
n+1∑

j=m+1

�C + An+1

n! , n > m.

Theorem 3.1 implies that for r > 1 and n = n(r) > m, we have:

M(r; B∞f ) � C1r
k0

(
C + An+1

n!
)

(−r; q)∞

� C2r
k0 exp exp {� (n(r) + 1)} (−r; q)∞.
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Substituting (3.1) and taking into account that

(−r; q)∞ �C exp

{
ln2 r

2 ln(1/q)
+ ln r

2

}
, (3.10)

we get (3.7).
(ii) We set An := C0 exp(np1). The sequence {An/n!} is increasing starting from some place,

say, for n > m. Hence, as in (i) we get

S(n + 1)�C + An+1

n! , n > m.

Therefore, by Theorem 3.1 we have

M(r; B∞f )�C1r
k0 exp

{
(n(r) + 1)p1

}
(−r; q)∞.

Substituting (3.1) and taking into account (3.10), we obtain (3.8). �

4. Image of an entire function

Corollary 3.4 implies that if f is entire, then B∞(f, q; z) is an entire function with a rather slow
growth restricted by (3.9). Since

B∞(f, q; z) = (z; q)∞
∞∑

k=0

f (1 − qk)zk

(q; q)k
,

where M(r; (z; q)∞)�C1 exp(C2 ln2 r), it seems unlikely that estimate (3.9) can be essentially
improved. However, for the entire functions f whose growth is slower than exp(C ln2 r), we can
get a better estimate for M(r; B∞f ) than (3.9).

To do this, we need to express B∞f using divided differences of f. For distinct points
x0, x1, . . . , xk, we denote by f [x0; x1; . . . ; xk] divided differences of f, that is

f [x0] = f (x0), f [x0; x1] = f (x1) − f (x0)

x1 − x0
, . . . ,

f [x0; x1; . . . ; xk] = f [x1; . . . ; xk] − f
[
x0; . . . ; xk−1

]
xk − x0

.

It is known (cf., e.g., [5, Chapter 4, Section 7, p.121]) that if xi are all different, then

f [x0; x1; . . . ; xk] =
k∑

j=0

f (xj )

(xj − x0) . . . (xj − xj−1)(xj − xj+1) . . . (xj − xk)
. (4.1)

Lemma 4.1. For any f ∈ C[0, 1], the following representation holds:

B∞(f, q; z) =
∞∑

k=0

qk(k−1)/2f
[
0; 1 − q; . . . ; 1 − qk

]
zk, |z| < 1. (4.2)

Remark 4.1. The representation remains true in any disc, where B∞(f, q; z) admits an analytic
continuation.
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Proof of Lemma 4.1. By Eulers’s Theorem (cf., e.g. [1, Chapter 10, Section 10.2]) we write:

(z; q)∞ =
∞∑

k=0

(−1)kqk(k−1)/2

(q; q)k
zk.

Hence, by (1.1) and (1.3) we have for |z| < 1:

B∞(f, q; z) =
∞∑

k=0

ckz
k, ck =

k∑
j=0

f (1 − qj )

(q; q)j
· (−1)k−j q(k−j)(k−j−1)/2

(q; q)k−j

.

We are to prove that ck = qk(k−1)/2f
[
0; 1 − q; . . . ; 1 − qk

]
, k = 0, 1, 2, . . . . Applying (4.1)

we express the divided differences of f as follows:

f
[
0; 1 − q; . . . ; 1 − qk

]
=

k∑
j=0

(−1)k−j f (1 − qj )

qj (j−1)/2(q; q)j qj (k−j)(q; q)k−j

.

Multiplying by qk(k−1)/2, we get ck . �

Theorem 4.2. Let f be a transcendental entire function. Then B∞(f, q; z) is an entire function
satisfying

M(r; B∞f ) = o(M(r; f )), r → ∞. (4.3)

Remark 4.2. If f is a polynomial of degree m, then Corollary 2.2 implies that

M(r; B∞f ) 
 M(r; f ) 
 rm for r large enough.

We may apply Theorem 4.2 to finding the eigenstructure of B∞. As a result, we get the following
statement.

Corollary 4.3. Let B∞(f, q; x) = 	f (x), 	 �= 0, x ∈ [0, 1]. If f satisfies the Lipschitz con-
dition at 1, then f is a polynomial.

Indeed, if f satisfies the Lipschitz condition at 1, then by Theorem 2.3(ii), B∞(f ; x) admits an
analytic continuation into a disc of radius R > 1. Since 	 �= 0, the same is true for f. In particular,
f is infinitely differentiable at 1. This, in turn, implies that B∞f is an entire function, as well as
f. By Theorem 4.2, f cannot be transcendental, because

M(r; B∞f ) = |	|M(r; f ),

contrary to (4.3). Thus, f is a polynomial.

Remark 4.3. It has been shown in [11, Lemma 7], that for every m = 0, 1, 2, . . . , the operator
B∞,q has an eigenvector pm(x) which is a monic polynomial of degree m, corresponding to the
eigenvalue qm(m−1)/2. For m�2 such a polynomial is unique.
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Proof of Theorem 4.2. Let f be a transcendental entire function. By ([10, Section 2.7, p. 44])
we have

f
[
0; 1 − q; . . . ; 1 − qk

]
= 1

2�i

∮
L

f (�) d�

�(� − (1 − q)) . . . (� − (1 − qk))
, (4.4)

where L is a contour around [0, 1].
If L is a circle of radius r > 1 centered at 0, then (4.4) implies∣∣∣f [

0; 1 − q; . . . ; 1 − qk
]∣∣∣ � 1

2�
· 2�rM(r; f )

r(r − 1)k
= M(r; f )

(r − 1)k
, r > 1. (4.5)

Now, given ε > 0, we choose N in such a way that

∞∑
k=N+1

qk(k−1)/22k < ε.

By (4.2)

(B∞f )(z) =
N∑

k=0

qk(k−1)/2f
[
0; 1 − q; . . . ; 1 − qk

]
zk

+
∞∑

k=N+1

qk(k−1)/2f
[
0; 1 − q; . . . ; 1 − qk

]
zk =: PN(z) + RN(z).

Hence

M(r; B∞f )�M(r; PN) +
∞∑

k=N+1

qk(k−1)/2
∣∣∣f [

0; 1 − q; . . . ; 1 − qk
]∣∣∣ rk.

For r > 2, we get using (4.5):

M(r; B∞f )�M(r; PN) + M(r; f )

∞∑
k=N+1

qk(k−1)/22k < M(r; PN) + M(r; f ) · ε,

due to the choice of N. Since M(r; PN) = o(M(r; f )), r → ∞, and ε > 0 is arbitrary small,
the statement follows. �

5. Image of a function with “bad” smoothness

Generally speaking, the theorems of Sections 2 and 3 imply that the operator B∞ improves
the analytic properties of a function f. In particular, B∞ maps C[0, 1] into a subset of C[0, 1]
consisting of functions that admit analytic continuation into the unit disc. Therefore, B∞ improves
possible “bad” smoothness of f on the half-open interval [0, 1).

Naturally, a question arises whether this operator improves possible “bad” smoothness at 1.
Statement (i) of Theorem 2.3 shows that in some cases, this actually happens. Indeed, functions
satisfying the Lipschitz condition at 1 are taken to functions analytic at 1.

Now, we will show that under certain additional conditions, the operator B∞ speeds up the
convergence of f (x) to f (1) as x ↑ 1.
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To measure the rate of f (x) approaching f (1) as x ↑ 1, we use the local modulus of continuity
at 1 defined by

�(f ; �) := max
1−��x �1

|f (x) − f (1)|. (5.1)

Clearly, �(f ; �) is a continuous monotone increasing function on [0, 1] with �(f ; 0) = 0. Our
further reasoning is based upon the following assertion.

Theorem 5.1. For f ∈ C[0, 1], let �(f ; �) be defined by (5.1). Then

�(B∞f ; �)�C�
∫ 1

q1/�

�(f ; t)

t
dt, � ∈ (0, 1/2]. (5.2)

Estimate (5.2) is sharp up to a constant C = Cf,q.

The following immediate corollaries of Theorem 5.1 illustrate an increase in the rate of f (x)

approaching f (1) as x ↑ 1.

Corollary 5.2. If �(f ; �)�C (ln(1/�))−� , � > 1, 0 < ���0 < 1, then for � small enough,
�(B∞f ; �)�C1�, that is B∞f satisfies the Lipshitz condition of order 1 at 1.

Corollary 5.3. If �(f ; �)�C (ln(1/�))−1 , 0 < ���0 < 1, then for � small enough, �(B∞f ;
�)�C1� ln(1/�).

Corollary 5.4. If �(f ; �)�C (ln(1/�))−� , 0 < � < 1, 0 < ���0 < 1, then for � small
enough, �(B∞f ; �)�C1�

�, that is B∞f satisfies the Lipshitz condition of order � at 1.

Corollary 5.5. If �(f ; �)�C (lnk(1/�))−� , k > 1, � > 0, 0 < ���0 < 1, then for � small
enough, �(B∞f ; �)�C1 (lnk−1 a/�)−� , a > 0.

Taking into account Corollary 4.3, we obtain the following assertion.

Corollary 5.6. If �(f ; �)�C (lnk(1/�))−� , k > 1, � > 0, 0 < ���0 < 1, and B∞(f, q; x)

= 	f (x), 	 �= 0, x ∈ [0, 1], then f is a polynomial.

Proof of Theorem 5.1. Since B∞ reproduces linear functions and satisfies (1.5), we may assume
without loss of generality that f (1) = B∞(f, q; 1) = 0. For x ∈ [0, 1), we have

B∞(f, q; x) = (x; q)∞
∞∑

k=0

f (1 − qk)
xk

(q; q)k
.

Obviously,

(x; q)∞
(q; q)k

� (1 − x)(xq; q)∞
(q; q)∞

� (1 − x)

(q; q)∞
=: Cq(1 − x) for x ∈ [0, 1).
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Therefore,

|B∞(f, q; x)| � Cq(1 − x)

∞∑
k=0

|f (1 − qk)|xk

� Cq(1 − x)

∞∑
k=0

�(f ; qk)xk, x ∈ [0, 1).

We set

w(y) := �(f ; qy), 0�y < ∞
and write the above estimate in the form

|B∞(f, q; x)|�Cq(1 − x)

∞∑
k=0

w(k)xk.

Since w(k)xk is a non-increasing function in k with x ∈ [0, 1] being fixed, we get

∫ ∞

0
w(y)xydy�

∞∑
k=0

w(k)xk �w(0) +
∫ ∞

0
w(y)xy dy. (5.3)

Taking s = ln(1/x), we estimate the integral in (5.3) as follows:∫ ∞

0
w(y)xydy =

∫ ∞

0
w(y) exp(−ys)dy

=
∫ 1/s

0
w(y) exp(−ys)dy +

∫ ∞

1/s

w(y) exp(−ys)dy

�
∫ 1/s

0
w(y) exp(−ys)dy + w(1/s)

e−1

s
�2

∫ 1/s

0
w(y) dy.

Therefore,

|B∞(f, q; x)| � Cq(1 − x)

{
w(0) + 2

∫ 1/ ln(1/x)

0
w(y) dy

}

� Cq

{
w(0)(1 − x) + 2 ln(1/x)

∫ 1/ ln(1/x)

0
w(y) dy

}
.

Due to the fact that ln(1/x)
∫ 1/ ln(1/x)

0 w(y) dy is a decreasing function in x, we conclude that

�(B∞f ; �)�Cq

{
w(0)� + 2 ln

(
1

1 − �

) ∫ 1/ ln(1/(1−�))

0
w(y) dy

}
.

Recall that w(y) = �(f ; qy). Substituting t = qy into the last integral, we get

�(B∞f ; �)�Cq

{
w(0)� + 2

ln(1/(1 − �))

ln(1/q)

∫ 1

q1/ ln(1/(1−�))

�(f ; t)

t
dt

}
.
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Since �� ln(1/(1 − �))�2� for � ∈ (0, 1/2], we get

�(B∞f ; �)�C1� + C2�
∫ 1

q1/�

�(f ; t)

t
dt for � ∈ (0, 1/2]

and (5.2) now follows. We note that C2 does not depend on f, while C1 = Cq,f .
To show that (5.2) is sharp, we take f (x) = �(1 − x), where �(�) is a continuous increasing

function on [0, 1] with �(0) = 0. In this case,

|B∞(f, q; x)| =
∞∑

k=0

�(qk)p∞k(q; x).

We notice that for x ∈ [0, 1],

p∞k(q; x) = xk

(q; q)k
(x; q)∞ �xk(1 − x)(q; q)∞ =: Cqxk(1 − x).

Therefore, we get

|B∞(f, q; x)| � Cq(1 − x)

∞∑
k=0

�(qk)xk = Cq(1 − x)

∞∑
k=0

w(k)xk

� Cq(1 − x)

∫ ∞

0
w(y)xy dy,

because of (5.3). This inequality implies that

�(B∞f ; �)�Cq�
∫ ∞

0
w(y)(1 − �)y dy.

We set s = ln(1/(1 − �)) and obtain for � ∈ (0, 1/2]:
�(B∞f ; �) � Cq�

∫ ∞

0
w(y) exp(−ys)dy�Cq�

∫ 1/s

0
w(y) exp(−ys)dy

� Cqe−1�
∫ 1/s

0
w(y)dy = C�

∫ 1/(ln(1/(1−�))

0
w(y)dy

� C�
∫ 1

q1/�

�(t)

t
dt. �

Theorem 5.1 along with Corollaries 5.2–5.5 show that in many cases the estimate for �(B∞f ; �)

is better than for �(f ; �). This does not imply, however, that �(B∞f ; �) = o (�(f ; �)) as � ↓ 0.

For example, let f = (1−x)2. Then, in virtue of Lemma 2.1, B∞f = (1−x)(1−qx). Therefore,
�(f ; �) = �2, whereas �(B∞f ; �) 
 C�.

The next theorem provides conditions for �(B∞f ; �) = o (�(f ; �)) as � ↓ 0 to be true.

Theorem 5.7. For f ∈ C[0, 1], let �(f ; �) be defined by (5.1). We assume that �(f ; �) satisfies
the following regularity condition:

∃b ∈ (0, 1), lim
�↓0

�
∫ 1
b1/�

�(f ;t)
t

dt

�(f ; �)
= 0. (5.4)
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Then

lim
�↓0

�(B∞f ; �)

�(f ; �)
= 0. (5.5)

Corollary 5.8. If C1�

 ��(f ; �)�C2 (ln(1/�))−� , 0 < 
 < � < 1, then (5.5) holds.

Proof of Theorem 5.7. By virtue of (5.2), it suffices to prove that (5.4) implies

lim
�↓0

�
∫ 1
q1/�

�(f ;t)
t

dt

�(f ; �)
= 0 for any q ∈ (0, 1). (5.6)

If q �b, this is obvious.
If q < b, we are to prove that

lim
�↓0

�
∫ b1/�

q1/�
�(f ;t)

t
dt

�(f ; �)
= 0.

We have:

�
∫ b1/�

q1/�

�(f ; t)

t
dt � � �(f ; b1/�)

∫ b1/�

q1/�

dt

t

= ln(b/q)�
(
f ; b1/�

)
�

(
ln(1/q)

ln(1/b)
− 1

)
�

∫ 1

b1/�

�(f ; t)

t
dt,

because

�
∫ 1

b1/�

�(f ; t)

t
dt �� �

(
f ; b1/�

) ∫ 1

b1/�

dt

t
= ln(1/b)�

(
f ; b1/�

)
.

Therefore, (5.6) is true. �
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